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ABSTRACT

This report presents an experimental verification of Womersley's method
for the calculation of instantaneous flow rate in a pulsating incompressible flow
from the measured instantaneous longitudinal pressure gradient in rigid pipes.
The method of computation is applicable to any complex flow pulse. The experi-
mental flow generation was based on fluidic and peristaltic pumps producing a
variety of pulsatile and oscillatory flows having finite mean flow rates. Digital
computer calculations of instantaneous flow rates were in good agreement with
measured data. The instantaneous phase angle between pressure and flow was
also investigated and was found to be a function of the pipe Stokes number.

b
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DEFINITION OF SYMBOLS

A mean of pressure gradient pulse, N/m?

A'B Fourier coefficients of pressure gradient pulse

C constant of differential equation

D tube diameter, m

f pulse frequency, Hz

g gravity constant, N-m? kg™?

Jg» Jy Bessel functions of first kind of order zero and one,
respectively

k (aM,)/(2M,)

K pressure gradient peak

L length, m

M modulus of pressure gradient

M mass flow rate, kg/s

M,, M, moduli of J,, Jy, respectively

ml i[sinzo + (k - cos 0)2]%

n refers to nth harmonic

N number of Fourier harmonics

P pressure, N/m?

Py static pressure, N/m?

viii
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DEFINITION OF SYMBOLS (Continued)

total flow rate, m¥/s

alternating flow component, m®/s
steady (mean) flow component, m3/s
gas constant, J *K~! mol™?

effective Reynolds number, %Lg

Reynolds number, v_i)_p

D%w

Stokes number, 5

time, s

temperature, *K

velocity coefficient, dependent upon radial position
velocity, m/s

volume, m?

weight flow rate, Mg

axial distance, m

dimensionless radial coordinate, r/R
characteristic parameter, R \/:Z

mass density, kg/m3

135° -9, + 0,



DEFINITION OF SYMBOLS (Concluded)

€ phase angle compleiment between flow and pressure
gradient, arc tan (sind/[k - cos 6})

61, 0y phase angles of Jy, J;, respectively, rad

m dynamic viscosity, N-s/m?

v kinematic viscosity, m%/'s

w angular frequency, 2rf

Y pg, weight density

0] phase angle of pressure gradient pulse, rad.




TECHNICAL MEMORANDUM X-53719

AN EXPERIMENTAL STUDY OF PULSATING FLOW OF
INCOMPRESSIBLE VISCOUS FLUIDS IN RIGID PIPES
IN THE INTERMED IATE DAMPING RANGE

SUMMARY

This report presents an experimental verification of Womersley's method
for the calculation of instantaneous flow rate in a pulsating incompressible flow
from the measured instantaneous longitudinal pressure gradient in rigid pipes.
The method of computation is applicable to any complex flow pulse. The experi~
mental flow generation was based on fluidic and peristaltic pumps producing a
variety of pulsatile and oscillatory flows having finite mean flow rates. Digital
computer calculations of instantaneous flow rates were in good agreement with
measured data. The instantaneous phase angle between pressure and flow was
also investigated and was found to be a function of the pipe Stokes number.

INTRODUCTION

The study of modern hydraulic control systems demands adequate knowl-
edge of transient viscous flow in pipes and valve components. In particular, it
is important to know the instantaneous relationship between pressure and fluid
velocity in oscillating or pulsating viscous incompressible pipe flows.

While the topic of steady viscous pipe flow has received attention from
numerous experimenters for more than a century, the study of pulsatile viscous
pipe flow has been pursued with significant success only since 1928. The appli-
cation of Reynolds number similarity to steady pipe flow is now classical, but
the analogous application of Stokes number similarity to oscillating pipe flow is
still not generally known.

The studies of Grace [1] in 1928 involved the equations of motion, velocity
profile, and phasing of pulsating flow. Considerable work has followed, and the
number of independent studies has increased exponentially to the present.



The cardiovascular system of the body is vividly pulsating in nature.
In this respect, much of the pulsatile flow knowledge that exists today has
evolved from the study of blood flow. Several individuals have instrumented
the arteries of animals in an attempt to gain an understanding of the circulation
system. The collaborated works of McDonald [2], a physiologist, and Womersley

[ 3], a mathematician, are particularly noteworthy, serving as a guide for this
project.

The work of Womerley in 1955 stands out as a significant analytical
approach for the computation of the velocity profile and instantaneous flow rate
in pulsating flow. Linford and Ryan [4], among other workers, using a recip-
rocating piston pulse generator, were successful in 1965 in matching theory with
experimentation. The research involved verification of both instantaneous flow
rate and the more difficult velocity profile for the case of zero mean flow dis-
charge. This study has had a similar objective dealing only with flow rate but
involving a wide variety of pulse shapes having finite mean flow rates. Because
of the nonlinearity of the Navier-Stokes equations, the superposition of a steady
flow affects the periodic terms.

For two pipe flows of equal L/D ratio at a very small Mach number to
be equivalent in both steady and dynamic states, the Reynolds number, the
acoustic Reynolds number, and the Stokes number must be equal. This
similarity law can be derived from dimensional analysis and was demonstrated
for pipe flow by Goldschmied [5]. The Stokes number was shown to have the
characteristics of a dynamic damping index and classifies dynamic fluid flow
into regimes in regard to dynamic conditions. Three regimes can be identified
by the Stokes number. The high-damping regime comprises the range from
steady-state flow (S = 0) up to S= 10. The intermediate-damping regime com-
prises the Stokes number range from 10 to 1000; most practical applications
fall in this region. The low-damping regime comprises the Stokes number range
above 1000,

THEORY

Womersley in his analysis of pulsating flow applied a technique which made
possible the expression of a complex wave shape in terms of the Fourier series.
In so doing, a pressure gradient wave can be expressed as the sum of a mean
and a series of sinusoidal components (the harmonics of the series). Womersley
solved the Navier-Stokes equation for one-dimensional flow by assuming a
sinusoidal pressure gradient. This approach allows the computation of




instantaneous flow rate for any complex pulse on a term-by-term basis,

the sum of which being the resultant flow wave. Each element of the sum

can be thought of as an individual flow problem in its own right having its own
amplitude, frequency, and phase,

Womersley based his original development on the one-dimensional Navier-
Stokes equation for laminar pulsatile flow of an incompressible, Newtonian fluid.

oA i 9p 8%y i dv
— = . + E
ot p 9x v <¥f r 8r> (1)

Equation 1, which may be found in Schlichting (6), applies where tangential

and radial components of velocity are zero and where the axial velocity component
is independent of the axial station, The pressure gradient was assumed to be the
following simple harmonic function to facilitate a solution of the above.

iwt _
- _85 = real (Ke ) = M cos(wt + ¢) (2)
Similarly, flow velocity may be expressed as a harmonic function
iwt

v = ue ‘ (3)

where u is a function of radial station. Substitution of equations 2 and 3 into

equation 1 and insertion of the dimensionless radial coordinate, y = 1% , result
in a form of Bessel's equation,
oy y @ u

where a nondimensional characteristic parameter, o, proportional to the square
root of Stokes number, S, was introduced for convenience.
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Solution of equation 4 may be obtained b ufilizing the boundary conditionu = 0

at y = 1 to achieve the following result written in terms of Bessel functions
of the first kind of order zero.

_ KR I (1% 2ay)
4 ot [1 - ?’w—ﬂ ()

Upon returning to the original velocity notation, flow rate may be equated to
the integral of velocity over the entire cross section of the tube.

R o zKB | 20.G¥%) | gt
iS/zaJo(i3]2a)

(7)

Womersley then chose to express the complex Bessel functions in the form of
modulus and phase.

Jo(i3/2a>= Me' (8)
J1<i3/2a) = Mleie1 (9)

Equations 8 and 9, as well as the right hand side of equation 2, may be substituted
into equation 7 to yield the following expression.

4
Q = IMB- % [sin(wt-¢)) - %\-1:[/[-1 sin(wt-¢‘5):| (10)
0

The following definitions may then be assigned.

_ oM
k = oM, (11)




3
M'= i |:s,in26+ (k-cosd)z] (12)

tan € = sin 6/ (k - cos 6) (13)

Tables of M'/a? and e have been compiled by Womersley for values of a from
zero to ten and are given as a computational aid in the appendix to this report.
Womersley derived asymptotic expressions for M' and ¢ when « is greater than
ten or the Stokes number is approaching 1000,

YUPPI- PR i (14)
a (07

1 19

+
ot T 24Nzl (15)

The asymptotic expressions apply to the ""low-damping' flow regime discussed
by Goldschmied [5]. For « greater than twenty (Stokes number, S > 1600),

M' may be equated to one and ¢ may be equated to zero without appreciable

loss of accuracy. This corresponds to a ''zero-damping' or acoustic regime
which is commonly treated by inviscid acoustic theory. Substitution of equations
11, 12, and 13 into equation 10 and the use of the relationships A = M cos ¢

and B = M sin ¢ result in the final form for calculation of time dependent flow
rate for the nth harmonic.

4 1
Q = aR _Mzn [(A sin ¢ - B_cose¢ )cos nwt
n.ou ol n n n n

+ <A cose_+ B sine )sin nwt:l (16)
n n n n
The steady, mean flow may be written according to Poiseuille's law.

TR%A,
= T (17)
Qp su



Summing the steady and pulsating flows results in the total instantaneous flow
rate — the object of this derivation:
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EXPERIMENTAL APPARATUS AND PROCEDURE

Figure 1 is a schematic representation of the experimental apparatus.
The test section consisted of a straight rigid copper tube having a diameter of
1.11 cm (7/16 in.) and approximate length of 6 m (20 ft). Eleven pressure
taps were soldered normal to the tube axis at 0.3048 m (1 ft) intervals with a
liberal untapped margin of several meters at either end. A variable reluctance
dc output pressure transducer was rated at 3. 44 N/cm? (5 psi) differential
pressure with a frequency response of 1000 Hz. The flow rate instrumentation
consisted of an electromagnetic flow meter with a 0. 952 cm (3/8 in.) diameter
transducer. Frequency response was variable and could be selected by the
operator at a maximum of 150 Hz. A calibration of the measured flow pulse
was performed using the digital computer for each run by applying the timed
volumetric measurement to the mean of the flow pulse.

Water was used exclusively as the fluid medium. The test system was
designed to operate as a closed or an open fluid system. As a closed system,
constant equal pressure heads could be maintained at both reservoir and
receiver. As an open system, it was possible to obtain mean flow measurements
through an overflow spill neck in the receiver tank which emptied into a graduated
receptacle for timed volumetric measurements.

Two artificial heart pumps, an electric motor-driven heart pump ( Fig. 2)
and a fluidic compressed air~driven heart pump (Fig. 3), were employed as
pulsating flow generators. The construction and operation of both pumps are
fully described by Goldschmied, Prakouras, and Nelson [7].




The peristaltic pump functions by pushing the fluid medium through a
distensible tubing lying in a circular track under the influence of a pair of
rollers which bear on and collapse the distensible tubing as they traverse its
length. The approximate maximum flow output and frequency are 49 cm?®
(3 in.%) per second and 5 Hz, respectively. The latter parameters are variable
according to roller pressure and motor speed, but in all cases they produce a
near sinusoidal flow pulse.

The fluidic pump was developed at the University of Utah from a design
pioneered by the U, S. Army's Harry Diamond Laboratories. The pump is
based on a pneumatic fluidic amplifier which alternately fills and evacuates a
soft Silastic ventricle within a brass housing. Bicuspid Daggett valves at
water intake and discharge ports are features of the pump design. The fluidic
pump used during this experiment was limited in frequency to the range of
1 to 3 Hz, Pumping capacity, with equal filling and static heads of 0.3048 m
(1 ft) of water, ranged from 24.6 to 115 cm® (1.5 to 7 in.®) per second.

Pressure gradient measurements were taken at pressure taps 1.22 and
1.525 m (4 and 5 ft) apart along the test section to accommodate the convenient
measuring range of the pressure transducer. Other spacings were also tried
for differential pressure measurements, resulting in no appreciable difference
in differential pressure per meter length.

The two pumps were operated over their ranges of performance to
obtain variation in the parameters, frequency, mean flow, and wave shape.

Water temperature, a critical parameter affecting viscosity, was
monitored frequently during tests. Water pressure heads of 0.3048 m were
maintained at both reservoir and receiver tanks.

EXPERIMENTAL AND COMPUTED RESULTS

A summary of the experimental program performed herein is presented
in Table I and illustrated graphically in Figures 4 through 25. The results are
presented in order of increasing Stokes number, where the frequency is the
fundamental pulsating or oscillating frequency. An additional parameter, the
effective Reynolds number, is based on the measured mean flow rate, i.e.,
the average pumping rate,



TABLE I,

EXPERIMENTAL PROGRAM

Run Stokes Effective Pulse Mean Figur;.l
No. No., S Reynolds Frequency, | Flow Rate, No.
No. ’ Reo f (HZ) Qo
cm®/s (gpm)
Peristaitic Pump

1 870 1556 1.27 15.40 (0.245) 4
2 1089 2033 1.59 20,05 (0.318) 5
3 1347 2538 1.96 25,00 (0.397) 6
4 1597 2819 2.33 27.80 (0.441) 7

5 2078 4143 3.03 40,80 (0.648) 8

Fluidic Pump

6 687 8939 1. 00 88,20:(1. 398) 9
7 758 2787 1.09 27.00 (0. 429) 10

8 803 10 826 1,22 111, 00,(1.765) 11

9 837 9445 1.19 90,70.(1, 442) 12
10 872 5535 1.25 53.7 (0.851) 13
11 902 2324 1,32 22.90 (0. 364) 14
12 1009 10 135 1.43 97.00 (1. 538) 15
13 1039 2107 1.52 20.80 (0.330) 16
14 1353 2798 1.89 26,40 (0. 419) 17
15 1648 2051 2.44 22,55 (0. 358) 18
16 1724 3842 2.44 36.80 (0.583) 19
17 1782 1923 2.63 19.25 (0. 305) 20
18 2050 2070 3.20 21.85 {0.347) 21
19 2112 2345 3.13 23.5 (0.373) 22

Reciprocating Piston ( Linford and Ryan)

20 77 0 0.214 0 23
21 778 0 0.169 0 24
22 1774 0 0.309 0 25




The measured pressure gradient, measured flow rate, and calculated
flow rate are depicted over one complete cycle for each test run. The method
of Womersley, as described earlier, was utilized in obtaining calculated flow
pulses. A digital computer program was compiled in Fortran IV to fit the
measured pressure gradient with a Fourier series. Flow rate was then com-
puted on the basis of each harmonic of the series, and the individual solutions
were summed to obtain the resultant calculated flow rate depicted on each plot.

The flow wave shapes obtained with the peristaltic pump were irregular
to near sinusoidal. Verificaticn of the theoretical method of Womersley was
achieved in terms of phase and amplitude. Note that the shapes of the flow
pulses are not evident by inspection of the corresponding pressure gradient
pulses. High frequency transients occurred throughout pressure gradient
measurements. A considerable portion of the gradient pulse is negative even
though no flow reversal was either calculated or measured. Most of these
comments apply equally as well to experimental test runs obtained using the
fluidic pump where a close correlation of theory and experiment was achieved.

Phase angles between pressure gradient and flow pulses are, as before,
difficult to assess because of highly fluctuating data. The pressure gradient
pulse may, however, be seen to be clearly leading the flow pulse in all cases;
thus, fluid inertia has been demonstrated. A pressure pulse is depicted in
Figure 11 and may be seen to be similar in shape to the gradient pulse. Mean
values corresponding to steady flow conditions have been noted on all figures.
Experimental data, collected by Linford and Ryan [4] in an earlier investigation
using a reciprocating piston, have been utilized as an additional criterion, Three
representative runs, presented graphically in Figures 23, 24, and 25, have
yielded the same correspondence of theory and experiment demonstrated by
Linford. The experimental data presented here are based on the work of
Zumbrunnen [ 8] at the Fluid Control Systems Laboratory of the University of Utah.

DISCUSSION

Mean Flow Pressure Gradient

Initially, difficulty was encountered during computations in acquiring a
correspondence in the mean levels of calculated and measured flow. Investigation
revealed a virtually uncorrectable laboratory measuring problem. The magnitude



of the pressure gradient (the mean) necessary to maintain the steady flow
component was very small in comparison with the oscillatory components.

Test run 13 (Fig. 16), for example, requires a pressure gradient mean of

only 0, 00628 (N/ecm?) m~! (0, 0028 psi/ft) to maintain its mean flow of 20, 8 cm%/s
(0.3295 gpm) ; whereas the oscillations in pressure gradient were two orders

of magnitude greater. In selecting instrumentation scale factors, the mean
gradient was unavoidably lost. This problem has been cited by both McDonald

[2] and Rudinger [9]. The only alternative was to superimpose the oscillatory -
components of the pressure gradient, as defined by the harmonics of the Fourier
series, onto the measured mean level such that the measured mean level becomes
the reference, This analysis has followed such a procedure.

Phase Angle between Pressure Gradient and Flow

The phase angle between pressure gradient and flow may be shown to be
a function of the Stokes number alone for sinusoidal oscillations; this relationship,
attributed to Womersley, is shown in Figure 26. The experimental points have
been obtained from the work of Linford and Ryan [4] and Sarpkaya [ 10]; in both
cases, the flow oscillation was sinusoidal, but with different upper Stokes num-
ber limits, i.e., 2350 in the former and 280 in the latter. It has not been pos-
sible to show the phase angle for the pulsatile flow of the present experimental
program because of the irregular and complex pulse shapes.

Limit of Applicability of Viscous Flow Theory

The present theory is based on the equation for time-dependent incompres-
sible viscous flow. As such, the theory will not be applicable to large Reynolds
numbers and Stokes numbers when the flow is turbulent and the damping negligible.
The problem is to estimate the practical limit of engineering applicability of
the viscous theéry in terms of Reynolds number, Stokes number, and amplitude
of oscillation or pulsation. While the critical Reynolds number for steady flow
is accepted to be approximately 2000, it has been shown by Sarpkaya [10] that
for sinusoidally oscillating flow the critical Reynolds number is a function of
the Stokes number and of the amplitude ratio, This dependence is presented
in Figure 27, reproducing the data of Figure 10 of Reference 10. At each
Stokes number, there is a definite maximum for the critical Reynolds number
at some value of the amplitude ratio. It is immediately apparent that laminar/
turbulent transition could be delayed up to a Reynolds number well over 5,000

10




by the proper combination of Stokes number and oscillatory amplitude because
transition occurs much later than indicated by the stability criterion. In the
present experimental program, runs 8, 9, and 12 with Reynolds numbers of
10, 826, 9445, and 10,135.show excellent agreement between experimental
flow and calculated flow and prove that the present viscous theory is certainly
applicable from the operational engineering approach to an effective Reynolds
number of 10,000 and a Stokes number of 1,000,

CONCLUS IONS

The correspondence of measured and calculated flow rate provided
verification of Womersley's method for the computation of instantaneous flow in
an incompressible fluid. The limits of applicability remain undefined beyond
the test range. Highly fluctuating experimental pressure gradient data have
had little effect on calculated flow under the conditions of this experimentation.
The analytical method is considered to be limited to cases where mean flow
rate is a known quantity for practical reasons since the mean pressure gradient
in most cases will not be distinguishable because of instrumentation limitations.
A digital computer is deemed almost essential to flow computations by the
method of Womersley. The complete Fortran computer program as used herein
is given in the appendix.

11
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FIGURE 2. FLUIDIC HEART PUMP WITH COVER REMOVED

FIGURE 3. PERISTALTIC HEART PUMP
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USING PERISTALTIC HEART PUMP. STOKES NUMBER 870;
EFFECTIVE REYNOLDS NUMBER 1566; PULSE FREQUENCY 1. 27 Hz
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FIGURE 5. RUN 2. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
PERISTALTIC HEART PUMP. STOKES NUMBER 1089;
EFFECTIVE REYNOLDS NUMBER 2033; PULSE FREQUENCY 1. 59 Hz
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FIGURE 6. RUN 3. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
PERISTALTIC HEART PUMP. STOKES NUMBER 1347;
EFFECTIVE REYNOLDS NUMBER 2538; PULSE FREQUENCY 1. 96 Hz
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FIGURE 7. RUN 4. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
PERISTALTIC HEART PUMP, STOKES NUMBER 1597;
EFFECTIVE REYNOLDS NUMBER 2819; PULSE FREQUENCY 2.33 Hz
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FIGURE 8. RUN 5. MEASURED PRESSURE GRADIENT,
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PERISTALTIC HEART PUMP. STOKES NUMBER 2078;
EFFECTIVE REYNOLDS NUMBER 4143; PULSE FREQUENCY 3. 03 Hz
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FIGURE 9. RUN 6. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP., STOKES NUMBER 687;
EFFECTIVE REYNOLDS NUMBER 8939; PULSE FREQUENCY 1. 00 Hz
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FIGURE 10. RUN 7. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP, STOKES NUMBER 758;
EFFECTIVE REYNOLDS NUMBER 2787; PULSE FREQUENCY 1. 09 Hz
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FIGURE 11. RUN 8. MEASURED PRESSURE GRADIENT,
MEASURED PRESSURE, MEASURED FLOW RATE, AND COMPUTED

FLOW RATE USING FLUIDIC HEART PUMP, STOKES NUMBER 803;
EFFECTIVE REYNOLDS NUMBER 10 826; PULSE FREQUENCY 1, 22 Hz
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FIGURE 13. RUN 10. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP. STOKES NUMBER 872;
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MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP, STOKES NUMBER 902;
EFFECTIVE REYNOLDS NUMBER 2324; PULSE FREQUENCY 1. 32 Hz
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FLUIDIC HEART PUMP. STOKES NUMBER 1353;
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27



FLOW RATE

PRESSURE GRADIENT

Q (in3/sec)

—dp/dx (psi/ft)

3.0

MEASURED | —a—
CALCULATED —o—
440
2.0
\ j 430
ZMEAN FLOW 1 420
0 RATE, Qo )
Y
410
0 0
4-10
-1.0
3 1.00
‘ﬁ Y 4.75
25 1 50
GRADIENT MEAN
0.0068(N/cm2)m’| - .25
0¢ \ , 1o
4-25
28 4-50

ew

TIME IN CYCLE, wt (radians)

FIGURE 18. RUN 15.

MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP, STOKES NUMBER 1648;
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FIGURE 20. RUN 17. MEASURED PRESSURE GRADIENT,
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FLUIDIC HEART PUMP, STOKES NUMBER 1782;
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30

40

30

20

10

cm3/s

(N/cm2)m!




FLOW RATE

PRESSURE GRADIENT

Q (in3/sec)

-dp/dx (psi/ft)

3.0
40
2.0
MEAN FLOW 30
RATE, Qo
A A
20
1.0 ~
"E
10 T
0 \! 0
-10
-1.0
MEASURED —o— 20
CALCULATED —o0— .
.
50 \ 1.0 T'E
A GRADIENT MEAN £
. 0.0066(N/cm2)m’! 5 L
/ S
0 ¢ —0— o =2
[
-5
-50 -1.0

2w

TIME IN CYCLE, wt (radians)

FIGURE 21, RUN 18, MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP. STOKES NUMBER 2050;
EFFECTIVE REYNOLDS NUMBER 2070; PULSE FREQUENCY 3. 20 Hz
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FIGURE 22. RUN 19. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
FLUIDIC HEART PUMP, STOKES NUMBER 2112;
EFFECTIVE REYNOLDS NUMBER 2345; PULSE FREQUE NCY 3. 13 Hz
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FIGURE 23. RUN 20. MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
LINFORD EXPERIMENT DATA, STOKES NUMBER 77;
PULSE FREQUENCY 0,214 Hz
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FIGURE 24. RUN 21, MEASURED PRESSURE GRADIENT,
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LINFORD EXPERIMENTAL DATA. STOKES NUMBER
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FIGURE 25. RUN 22, MEASURED PRESSURE GRADIENT,
MEASURED FLOW RATE, AND COMPUTED FLOW RATE USING
LINFORD EXPERIMENTAL DATA, STOKES NUMBER 1774;
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APPENDIX — FORTRAN COMPUTER PROGRAM

Macro Flow Chart of Digital Computer Program
and Subroutines

'READ IN: Tables of @, M'/a?, € from Table R, F,

ISTART v, 4, measured Qp, accuracy, number of data points, limit
on number Fourier harmonics, measured pressure gradient

and flow rate pulses.

COMPUTE: 8, «, p, Re, and interval
between data points.

CALL CLBRTE

COMPUTE: Integrate flow pulse to obtain mean and
equate to measured mean. Apply scale factor to
reference scale to calibrate flow pulse.

CALL FOURR

COMPUTE: Fourier coefficients by trapezoidal
integration of pressure gradient pulse. Fourier
representation of measured pressure gradient and
compare point by point with measured actuals.

No Had either specified accuracy ves
Il;c;‘ease :::mber been achieved or limit hit on
o larmoncs number of Fourier harmonics.
CALL INTRPL Yes (15 = 10 YN0

I

Perform linear interpolation
of tables for M'/a? and .

COMPUTE: M’ and ¢
by Womersley's M =1
asymptotic formulas. € =0

1

COMPUTE: Flow pulse of each
harmonic by Womersley's method
and sum with mean flow rate.

(PRINT: Inputs except tables, S, Re, p, angle in

pulse, pressure gradient representation, calibrated
measured flow rate, and calculated flow rate.




The following tabl_e gives amplitude parameters and phase
ments for frequency parameters from zero to ten.
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11-70
1161
11:63

13:48
11-37
1128
Hal
1114

11:08
10-08
1001
10-84
1077

10-70
10-03
10:66
1040
10-43

10:36
10-20
10:22
10-16
10-10

10:04
9-07
901
085
879

0-73

©
bk ©
8288 2

TE® POOOD CETOO

x Qo :
B *3XBE E&8&Eem
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Fortran IV Program of Womersley's Method

$SIUFTC MAIN

OO0 OOOOO

27

19

40

R M ZUMURUNNEN

*kxd WOMERSLEYS SOLUTION FOR INCOMPRESSIBLE PULSATILE FLOW #*%xx
A = COEFFICIENT OF FOURIER SERIES

ACC = ACCURACY OF FOURIER REPRESENTATION

ALPHA» AL = FREQUENCY PARAMETER

AZERO = CONSTANT (MEAN) OF FOURIER SERIES

8 = COEFFICIENT OF FOURIER SERIES

CALCG = CALCULATED FLOW RATE (CU IN)/SEC

DELP = MEASURED PRESSURE GRADIENT (PSI/XFT)

DELPF = FQURIER REPRESENTATION OF PRESSURE GRADIENT (PSI/FT.
DENS = DENSITY OF FLUID MEDIUM LBS/(CU FT)

DOMEGT = INCREMENT BETWEEN DATA POINTS . (RADIANS)

EPSILNe EP = PHASE ANGLE COMPLEMENT (RADIANS,DEGREES)
FMPOASY FMP = AMPLITUDE FACTOR

FMU = DYNAMIC VISCOSITY (LH SEC)/{(SQ FT)

FREG = PULSE FREQUENCY (CPS)

L = MAXIMUM ALLOWABLE NUMBER OF FOURIER TERMS

M = NUMBER OF DATA POINTS

OMEGT = ANGLE IN CYCLE (RADIANS)

GBAR = MEASURED MEAN FLOW RATE (GPM)

RAD TEST SECTION RADIUS (FT)

RHO DENSITY/GRAVITY SLUGS/(CU FT)

RNBSAR = REYNOLDS MNUMBER FOR EQUIVALENT STEADY FLOW

S = STOKES NUMBER OF FIRST HARMONIC

TXPQ = EXPERIMENTAL FLOW RATE (CU IN)/SEC

XFT = DISTANCE BETWEEN PRESSURE MEASUREMENT LOCATIONS (FT)
XPG@ = UNCALIBRATED EXPERIMENTAL FLOW RATE (CU UNITS}/SEC
DIMEMNSION AL(201)FMP(201)EP(201)/rA(50)sB(50)»DELP(100)»
1 FMPOAS(50) »EPSILN(50)s DELPF(50)» TXPQ(100), XP0(100)
READ 4» (AL(1)» I=1,201)

READ 41, (FMP(1)y» 1=1,201)

READ 4» (EP(I)» I=1,201)

READ 2+ RAD+ FREQe DENSs FMU» GBAR

READ S¢ XFT» ACCe Me L

READ 7+ (DELP(I)» I=1sM)

READ 7+ (XPQ(I)e I=1sM)

DO 191 = 1M

DELP(I) = DELP(I)/XFT

™ = M

DOMEGT = 2.%3.141593/TM

RHO = DEMS/32.174

S = B8.x3,141593%RAD*RAD*FREQ*RHO/FMU

ALPHA = RAD*SORT((6.283184*FREQ*RHO) /FMU)

RNBAR = 2.*RHO4QBAR/(1410.14%RAD*FMU)

PRINT 22

PRINT 99, RAD/FREG»RHO»DENS»FMU

PRINT 23

PRINT 98¢ GQBAR'RNBAR¢ALPHA*S

CALL CLBRTE(MsDOMEGT 1, XPQ» TXPQ»QBAR»100+FREQ)

CALL FOURR(DONEGT:ACCquNaDELPoAZEROoA B DELPFoLolOOvSO)
QZERO = QBAR*231./60.

DO 15 I=1sN

FI =1

ALPHA = RAU*SQRT((6.,283184%FI*FREQG*RHO)/FMU)




6
9

12
15

80

100

2
4
5
7
22

23
41
81

82
98
99

IF(ALPHA=104) 30346

CALL INTRPL(AL» FMPy ALPHA» FMPO)

CALL INTRPL(AL» EP» ALPHA: EPSI)

FMPOAS(I) = FMPO

EPSILN(I) = EPSI/57.2958

60 TO 15 .

IF (ALPHA=20,) 9» 9 12

FMPOAS(I) = (1e=1.,414214/7ALPHA+L./(ALPHA®ALPHA))/ (ALPHA®ALPHA)
EPSILN(I) = 1.,4142147ALPHA+L./(ALPHA®ALPHA)+.55979/ (ALPHA®

LALPHA®ALPHA)

GO TO 15

FMPOAS(I) = 1./ (ALPHA%ALPHA)
EPSILN(I) = 0.

CONTINUE

PRINT 81

DO 100 J=1M

Fy = J

OMEGT = FJ*DOMEGT

SIGQ = 0.

DO 80 T = 1N

FI =1

SIGG = SIGE + ((A(IN*SINIEPSILN(I))=B(I)*COS(EPSILN(I)))

1%COS(FI#OMEGT) + (A(I)#COS(EPSILM(I)) + B(I)*SIN(EPSILN(I)))
2*SIN(FI#OMEGT) ) #3,141593%RA0*RAN*RAD*RAD*FMPOAS(I)/FMU

CALCG = GZERO + SIGQ #1728.%1u4,
PRINT 82+ OMEGTs DELPF{(J)» DELP(J)¢ CALCQs TXPR(J)

CONTINVE

GO 1O 27

FORMAT(5F15.8)

FORMAT (16F5.2)

FOKMAT(2F15.8¢ 2110)

FORMAT{8F10.5)

FORMAT ( 75H1 RAD FREQ RHO DENS

1 FMU )

FORMAT (55H0 GRAR RNBAR ALPHA s )
FORMAT(16F5.4)

FOKMAT ( 75H0 OMEGY DELPF DELP CALCO

1 TXPQ )

FORMAT(1H ¢ SF13.6)

FORMAT(1H » F13.6¢ F13.2¢ F13.6¢ F13.2)

FORMAT(1H » 4F13.6¢ F13.8)

END
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Flow Meter Calibration Subroutine

$IBFTC CLBRTE

C
c

50

60

42

SUBKOUTINE CLBRTE(MsDOMEGTXPQ¢ TXPQ¢QBAR» JB¢FREQ)
R M ZUMBRUNNEN

PRUGRAM TO CALIBRATE FLOW RATE
DIMENSION XPQ(JB)» TXPG(JB)
SUM = 0,

DT = DOMEGT/(2+%3,141593%FREQ)
DO 50 1 = 1M

SUM = DT=*XPQ(l) + SUM

XBAR = SUM=xFREQ

FACT = QBAR#*231./(60+.*X8AR)

DO 60 1 = 1sM

TXPQ(I) = FACT*XPQ(I)

RETURN




Subroutine for Fourier Representation

SIBFTC FOURR

SULROUTINE FOURR(DELX»ACCoMsNsY+AZEROCAIBsPToLoMMoNN)
R M ZUMBRUNNEN

PROGRAM TO COMPUTE FOURIER COEFFICIENTS .

DIMENSTON A(NN)e BINN)e Y{MM)y» PT(MM)

K=1

N=1

AAZERO = 0,

00 91 = 1M

AAZERO = Y(I) + AAZERO

AZERO = AAZERO*DELX/(2.%3,141593)

DO 20 J = KoN

ANN = 0.

BNN = 0.

FJ = J

D0 18 1 = 1M

F1 =1

ANN = Y(I)*COS(FJ*FI=DELX) + ANN
BNN = Y(I)&SIN{FJ*FI*DELX) + BNN
A{J) = DELX®ANN/3.141593

3(J) = DELX*BNN/3.141593
DO 84 I = 1M

FI =1

PTT = 0.

D0 83 J = 1N

FJ = J

PIT = A(J)*COS(DELX*FJSFI) + B(J)*SINI(DELXsFUSFI) ¢ PTT
PT(I) = AZERO + PTTY

00 60 I=1M

IFCARS (PT(I)=Y(1))=ACC) 60+ 60, 62

IF(N=L ) 63,100, 100

K=sN+1

NSN+ 1]

GO TO 13

CONTINUE

GO T0 103

PRINT 101

FORMAT (S5HO LIMIT ON NUMBER OF TERMS HIT )
PRINT 34

PRINT 40, (A(J)» J = 1¢N)

PRINT 38

PRINT 40r (B(J)e J = 1sN)

FORMAT(55HU =A= COEFFICIENTS FOLLOW:,» READ ACROSS J
FORMAT(55H0 ‘=i3= COEFFICIENTS FOLLOWe READ ACROSS )
FORMAT(1H ¢ S5F13.6)

RETURN

END
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Linear Interpolation Subroutine

SILDFTC INTRPL
SUBROUTINE INTRPL (X» Y» XPTe YPT)
C R M ZUMBRUNNEN
C PROGRAM TO PERFORM SIMPLE LINEAR INTERPOLATION
DIMENSION x(201)s Y(201)
00 5 J=1,201
IF(XPT=X(J)) 15, 100 5
S5 CONTINUE
10 YPT = Y(J)
GO T0 20
15 YPTIY(J=1) + (Y(J)=Y(J=1) )% (XPT=X(J=1))/(ABS(X(J)=X(J=1)))
20 RETURN
25 ENU
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RALC FHEG RHO
0.018230 1.515000 1.939454
QUAR RIBAR ALPHA
04329500 2106.71 164123771
=A= COEFFICIENTS FOLLOWe READ ACROSS
=0.098771 0.052643 0.000051
0.,011454 0.0220062 0.002571
0.025844 =0.042945 0.018362
=0,00210%5
=B~ COEFFICIENTS FOLLOWe READ ACROSS
=0.061601 =0.013390 =0.032335
0.012550 =0.009195 0.,030602
-0.013054 =0.005233 0.024942
-0.015861
OMEGT DELPF OELP
0.190400 0.0086006 0.008606
0.380799 =0+141996 =0,141997
0.571199 =0.215146 =0.215146
0.761598 =0.131669 =0.131670
0.951998 =0.075732 =0,075731
1.,142397 04101549 =0.101549
1.332797 »0.135972 =0.,135972
1.523197 =0.086050 ~0.086059
1.713596 ~0.025818 =0.,025818
1.903996 =-0.030120 =0.,030120
24094395 =~0.021515 ~0.021515
24284795 0028399 0.028399
2.475194 0.079174 0.079174
2.665594 04077453 0.,077453
2.855994 0.094664 0.,094664
3.046393 0.098967 0.098967
3.236793 0.107573, 0.107573
J.427192 0447504 0.447504
3617592 0.051635 0.051635.
3.,807992 0.137694% 0.137694
3.998391 04172117 0.172117
4.,188791 =0.025818 -0.025818
4.379190 0.068847 0.068847
4.569590 0.033563 0.033563
4.759989 ~0,032702 =0.032702
4.950389 0.025818 0.025818
5.140788 0.005163 0.,005164
5331188 =0.006885 -0.,006885
5.521568 0.021515 0.021515
5.711987 . -0.010327 =0.010327
5.902387 0.002582 0.002582
6.092786 0.012909 0.v12909
6.283186 0.000000 0.000000

Sample Computer Output, Run 13

DENS
62.400000

S
1039,.,90

0.011715
~0.000172
=0.013272

0.008173
=0,003501
=0.021247

CALCQ
2.139467
1.983629
1,43207S
0.964844
0.688827
0.482959
0.138378

=0.157399
=0+311205
=0.359645
-0,467236
=0.450314
=0.343736
-0.113584
0.030774
0.331172
0.433788
1.218453
1,912585
1.927741
2.431819
2.479912
2.460001
2.556875
2.467092
2+369633
2.380316
2,281528
2266779
2.224719
24165833
24155209
2.141550

FMmL)

0.00002360

0.015436
=0.018710
0.002716

-0.,019481
0.019456
0.018849

TXPQ
2.061618
1.616955
1,172293
0.929749
0.889325
0.404239
0363815
0.226374

~0.040424
=0,161696
=0.323391
=0.,040424
~0.,064678
-0.080848
0.080848
0.242543
0.646782
1,293564
1.455260
1.899923
2.263738
2.304162
2.,425433
2.328416
2304162
2.263738
2.425433
20223314
2.182890
2.263738
2.02119%
2.182890
24102042
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